\(\int \frac {a+b x+d x^3}{2+3 x^4} \, dx\) [162]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 136 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\frac {b \arctan \left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}-\frac {a \arctan \left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \arctan \left (1+\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}-\frac {a \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {1}{12} d \log \left (2+3 x^4\right ) \]

[Out]

1/24*a*arctan(-1+6^(1/4)*x)*6^(3/4)+1/24*a*arctan(1+6^(1/4)*x)*6^(3/4)+1/12*d*ln(3*x^4+2)-1/48*a*ln(-6^(3/4)*x
+3*x^2+6^(1/2))*6^(3/4)+1/48*a*ln(6^(3/4)*x+3*x^2+6^(1/2))*6^(3/4)+1/12*b*arctan(1/2*x^2*6^(1/2))*6^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.550, Rules used = {1890, 217, 1179, 642, 1176, 631, 210, 1262, 649, 209, 266} \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=-\frac {a \arctan \left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \arctan \left (\sqrt [4]{6} x+1\right )}{4 \sqrt [4]{6}}-\frac {a \log \left (3 x^2-6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (3 x^2+6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}+\frac {b \arctan \left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}+\frac {1}{12} d \log \left (3 x^4+2\right ) \]

[In]

Int[(a + b*x + d*x^3)/(2 + 3*x^4),x]

[Out]

(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - (a*ArcTan[1 - 6^(1/4)*x])/(4*6^(1/4)) + (a*ArcTan[1 + 6^(1/4)*x])/(4*6
^(1/4)) - (a*Log[Sqrt[6] - 6^(3/4)*x + 3*x^2])/(8*6^(1/4)) + (a*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(1/4))
+ (d*Log[2 + 3*x^4])/12

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1262

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 1890

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a}{2+3 x^4}+\frac {x \left (b+d x^2\right )}{2+3 x^4}\right ) \, dx \\ & = a \int \frac {1}{2+3 x^4} \, dx+\int \frac {x \left (b+d x^2\right )}{2+3 x^4} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {b+d x}{2+3 x^2} \, dx,x,x^2\right )+\frac {a \int \frac {\sqrt {2}-\sqrt {3} x^2}{2+3 x^4} \, dx}{2 \sqrt {2}}+\frac {a \int \frac {\sqrt {2}+\sqrt {3} x^2}{2+3 x^4} \, dx}{2 \sqrt {2}} \\ & = \frac {a \int \frac {1}{\sqrt {\frac {2}{3}}-\frac {2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx}{4 \sqrt {6}}+\frac {a \int \frac {1}{\sqrt {\frac {2}{3}}+\frac {2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx}{4 \sqrt {6}}-\frac {a \int \frac {\frac {2^{3/4}}{\sqrt [4]{3}}+2 x}{-\sqrt {\frac {2}{3}}-\frac {2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8 \sqrt [4]{6}}-\frac {a \int \frac {\frac {2^{3/4}}{\sqrt [4]{3}}-2 x}{-\sqrt {\frac {2}{3}}+\frac {2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8 \sqrt [4]{6}}+\frac {1}{2} b \text {Subst}\left (\int \frac {1}{2+3 x^2} \, dx,x,x^2\right )+\frac {1}{2} d \text {Subst}\left (\int \frac {x}{2+3 x^2} \, dx,x,x^2\right ) \\ & = \frac {b \tan ^{-1}\left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}-\frac {a \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {1}{12} d \log \left (2+3 x^4\right )+\frac {a \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}-\frac {a \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}} \\ & = \frac {b \tan ^{-1}\left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}-\frac {a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \tan ^{-1}\left (1+\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}-\frac {a \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {1}{12} d \log \left (2+3 x^4\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.94 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\frac {1}{48} \left (-2 \sqrt {6} \left (\sqrt [4]{6} a+2 b\right ) \arctan \left (1-\sqrt [4]{6} x\right )+2 \sqrt {6} \left (\sqrt [4]{6} a-2 b\right ) \arctan \left (1+\sqrt [4]{6} x\right )-6^{3/4} a \log \left (2-2 \sqrt [4]{6} x+\sqrt {6} x^2\right )+6^{3/4} a \log \left (2+2 \sqrt [4]{6} x+\sqrt {6} x^2\right )+4 d \log \left (2+3 x^4\right )\right ) \]

[In]

Integrate[(a + b*x + d*x^3)/(2 + 3*x^4),x]

[Out]

(-2*Sqrt[6]*(6^(1/4)*a + 2*b)*ArcTan[1 - 6^(1/4)*x] + 2*Sqrt[6]*(6^(1/4)*a - 2*b)*ArcTan[1 + 6^(1/4)*x] - 6^(3
/4)*a*Log[2 - 2*6^(1/4)*x + Sqrt[6]*x^2] + 6^(3/4)*a*Log[2 + 2*6^(1/4)*x + Sqrt[6]*x^2] + 4*d*Log[2 + 3*x^4])/
48

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.49 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.25

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (3 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{3} d +\textit {\_R} b +a \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}\right )}{12}\) \(34\)
default \(\frac {a \sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}{x^{2}-\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}-1\right )\right )}{48}+\frac {b \arctan \left (\frac {x^{2} \sqrt {6}}{2}\right ) \sqrt {6}}{12}+\frac {d \ln \left (3 x^{4}+2\right )}{12}\) \(121\)
meijerg \(\frac {d \ln \left (\frac {3 x^{4}}{2}+1\right )}{12}+\frac {\sqrt {6}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, x^{2}}{2}\right )}{12}+\frac {24^{\frac {3}{4}} a \left (-\frac {x \sqrt {2}\, \ln \left (1-6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8-3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \ln \left (1+6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8+3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}\right )}{96}\) \(193\)

[In]

int((d*x^3+b*x+a)/(3*x^4+2),x,method=_RETURNVERBOSE)

[Out]

1/12*sum((_R^3*d+_R*b+a)/_R^3*ln(x-_R),_R=RootOf(3*_Z^4+2))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.11 (sec) , antiderivative size = 17085, normalized size of antiderivative = 125.62 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\text {Too large to display} \]

[In]

integrate((d*x^3+b*x+a)/(3*x^4+2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [A] (verification not implemented)

Time = 0.84 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.46 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\operatorname {RootSum} {\left (165888 t^{4} - 55296 t^{3} d + t^{2} \cdot \left (3456 b^{2} + 6912 d^{2}\right ) + t \left (- 864 a^{2} b - 576 b^{2} d - 384 d^{3}\right ) + 27 a^{4} + 72 a^{2} b d + 18 b^{4} + 24 b^{2} d^{2} + 8 d^{4}, \left ( t \mapsto t \log {\left (x + \frac {27648 t^{3} b^{2} + 1728 t^{2} a^{2} b - 6912 t^{2} b^{2} d + 216 t a^{4} - 288 t a^{2} b d + 288 t b^{4} + 576 t b^{2} d^{2} - 18 a^{4} d - 90 a^{2} b^{3} + 12 a^{2} b d^{2} - 24 b^{4} d - 16 b^{2} d^{3}}{27 a^{5} - 72 a b^{4}} \right )} \right )\right )} \]

[In]

integrate((d*x**3+b*x+a)/(3*x**4+2),x)

[Out]

RootSum(165888*_t**4 - 55296*_t**3*d + _t**2*(3456*b**2 + 6912*d**2) + _t*(-864*a**2*b - 576*b**2*d - 384*d**3
) + 27*a**4 + 72*a**2*b*d + 18*b**4 + 24*b**2*d**2 + 8*d**4, Lambda(_t, _t*log(x + (27648*_t**3*b**2 + 1728*_t
**2*a**2*b - 6912*_t**2*b**2*d + 216*_t*a**4 - 288*_t*a**2*b*d + 288*_t*b**4 + 576*_t*b**2*d**2 - 18*a**4*d -
90*a**2*b**3 + 12*a**2*b*d**2 - 24*b**4*d - 16*b**2*d**3)/(27*a**5 - 72*a*b**4))))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.26 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d + 3 \, a\right )} \log \left (\sqrt {3} x^{2} + 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) + \frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d - 3 \, a\right )} \log \left (\sqrt {3} x^{2} - 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) + \frac {1}{24} \, \sqrt {3} {\left (3^{\frac {1}{4}} 2^{\frac {3}{4}} a - 2 \, \sqrt {2} b\right )} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x + 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) + \frac {1}{24} \, \sqrt {3} {\left (3^{\frac {1}{4}} 2^{\frac {3}{4}} a + 2 \, \sqrt {2} b\right )} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x - 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) \]

[In]

integrate((d*x^3+b*x+a)/(3*x^4+2),x, algorithm="maxima")

[Out]

1/144*3^(3/4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d + 3*a)*log(sqrt(3)*x^2 + 3^(1/4)*2^(3/4)*x + sqrt(2)) + 1/144*3^(3/
4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)*x^2 - 3^(1/4)*2^(3/4)*x + sqrt(2)) + 1/24*sqrt(3)*(3^(1/4)*
2^(3/4)*a - 2*sqrt(2)*b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x + 3^(1/4)*2^(3/4))) + 1/24*sqrt(3)*(3^(1/4)*2
^(3/4)*a + 2*sqrt(2)*b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x - 3^(1/4)*2^(3/4)))

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.92 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\frac {1}{24} \, {\left (6^{\frac {3}{4}} a - 2 \, \sqrt {6} b\right )} \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{24} \, {\left (6^{\frac {3}{4}} a + 2 \, \sqrt {6} b\right )} \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{48} \, {\left (6^{\frac {3}{4}} a + 4 \, d\right )} \log \left (x^{2} + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) - \frac {1}{48} \, {\left (6^{\frac {3}{4}} a - 4 \, d\right )} \log \left (x^{2} - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) \]

[In]

integrate((d*x^3+b*x+a)/(3*x^4+2),x, algorithm="giac")

[Out]

1/24*(6^(3/4)*a - 2*sqrt(6)*b)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x + sqrt(2)*(2/3)^(1/4))) + 1/24*(6^(3/4)*a +
 2*sqrt(6)*b)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x - sqrt(2)*(2/3)^(1/4))) + 1/48*(6^(3/4)*a + 4*d)*log(x^2 + s
qrt(2)*(2/3)^(1/4)*x + sqrt(2/3)) - 1/48*(6^(3/4)*a - 4*d)*log(x^2 - sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3))

Mupad [B] (verification not implemented)

Time = 9.48 (sec) , antiderivative size = 307, normalized size of antiderivative = 2.26 \[ \int \frac {a+b x+d x^3}{2+3 x^4} \, dx=\sum _{k=1}^4\ln \left (x\,\left (9\,a^2\,d+9\,b^3+6\,b\,d^2\right )+9\,a\,b^2-6\,a\,d^2-\mathrm {root}\left (z^4-\frac {d\,z^3}{3}+\frac {z^2\,\left (3456\,b^2+6912\,d^2\right )}{165888}-\frac {z\,\left (864\,a^2\,b+576\,b^2\,d+384\,d^3\right )}{165888}+\frac {a^2\,b\,d}{2304}+\frac {b^2\,d^2}{6912}+\frac {d^4}{20736}+\frac {b^4}{9216}+\frac {a^4}{6144},z,k\right )\,\left (\mathrm {root}\left (z^4-\frac {d\,z^3}{3}+\frac {z^2\,\left (3456\,b^2+6912\,d^2\right )}{165888}-\frac {z\,\left (864\,a^2\,b+576\,b^2\,d+384\,d^3\right )}{165888}+\frac {a^2\,b\,d}{2304}+\frac {b^2\,d^2}{6912}+\frac {d^4}{20736}+\frac {b^4}{9216}+\frac {a^4}{6144},z,k\right )\,\left (864\,a-864\,b\,x\right )-144\,a\,d+x\,\left (108\,a^2+144\,b\,d\right )\right )\right )\,\mathrm {root}\left (z^4-\frac {d\,z^3}{3}+\frac {z^2\,\left (3456\,b^2+6912\,d^2\right )}{165888}-\frac {z\,\left (864\,a^2\,b+576\,b^2\,d+384\,d^3\right )}{165888}+\frac {a^2\,b\,d}{2304}+\frac {b^2\,d^2}{6912}+\frac {d^4}{20736}+\frac {b^4}{9216}+\frac {a^4}{6144},z,k\right ) \]

[In]

int((a + b*x + d*x^3)/(3*x^4 + 2),x)

[Out]

symsum(log(x*(9*a^2*d + 6*b*d^2 + 9*b^3) + 9*a*b^2 - 6*a*d^2 - root(z^4 - (d*z^3)/3 + (z^2*(3456*b^2 + 6912*d^
2))/165888 - (z*(864*a^2*b + 576*b^2*d + 384*d^3))/165888 + (a^2*b*d)/2304 + (b^2*d^2)/6912 + d^4/20736 + b^4/
9216 + a^4/6144, z, k)*(root(z^4 - (d*z^3)/3 + (z^2*(3456*b^2 + 6912*d^2))/165888 - (z*(864*a^2*b + 576*b^2*d
+ 384*d^3))/165888 + (a^2*b*d)/2304 + (b^2*d^2)/6912 + d^4/20736 + b^4/9216 + a^4/6144, z, k)*(864*a - 864*b*x
) - 144*a*d + x*(144*b*d + 108*a^2)))*root(z^4 - (d*z^3)/3 + (z^2*(3456*b^2 + 6912*d^2))/165888 - (z*(864*a^2*
b + 576*b^2*d + 384*d^3))/165888 + (a^2*b*d)/2304 + (b^2*d^2)/6912 + d^4/20736 + b^4/9216 + a^4/6144, z, k), k
, 1, 4)